Advanced Geometry
 WS PC \#2 Unit 4 Review

1. Identify any congruent figures on the coordinate plane. Explain.

2. Describe the congruence transformation that maps $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$.

3. Describe the congruence transformation that maps $\triangle A B C$ to $\Delta A^{\prime} B^{\prime} C^{\prime}$.

Determine whether the polygons with the given vertices are congruent. Use transformations to explain your reasoning.
4. $\quad A(5,2), B(2,2), C(2,7)$ and $S(-4,-5), T(-1,-5), U(-1,0)$
5. $\quad E(6,-2), F(10,-2), G(10,-8), H(6,-8)$ and $W(4,8), X(4,10), Y(8,10), Z(8,8)$
6. Find the measure of the acute or right angle formed by intersecting lines so that P can be mapped to $P^{\prime \prime}$ using two reflections.
a. A rotation of 28° maps P to $P^{\prime \prime}$
b. The rotation $(x, y) \rightarrow(-y, x)$ maps P to $\mathrm{P}^{\prime \prime}$.

Find the scale factor of the dilation. Then tell whether the dilation is a reduction or an enlargement.
7.

8.

Using the polygons listed below, find the coordinates of the image after a dilation with a scale factor k.
9. $P(1,2), Q(2,2), R(4,-2), S(-1,-3) ; k=2$
10. $A(-4,4), B(-2,6), C(1,-1), D(-2,-4) ; k=-75 \%$
11. A standard piece of paper is 8.5 inches by 11 inches. A piece of legal-size paper is 8.5 inches by 14 inches. By what scale factor k would you need to dilate the standard paper so that you could fit two pages on a single piece of legal paper?

Using $\triangle P Q R$ with vertices $P(-1,5), Q(-4,3), R(-2,1)$, find the coordinates of its image after the similarity transformation.
12. Rotation: 180° about the origin

Dilation: $(x, y) \rightarrow(2 x, 2 y)$
13. Dilation: $(x, y) \rightarrow\left(\frac{1}{2} x, \frac{1}{2} y\right)$

Reflection: in the x-axis
14. Describe a similarity transformation that maps the black preimage onto the dashed image.

Determine whether the polygons with the given vertices are similar. Use transformations to explain your reasoning.
15. $A(-2,5), B(-2,2), C(-1,2)$ and $D(3,3), E(3,1), F(2,1)$
16. $J(-5,-3), K(-3,-1), L(-3,-5), M(-5,-5)$ and $T(3,3), U(4,3), V(4,2), W(3,1)$

