Simplify. Your answer should contain only positive exponents.

1) $3 x^{-4} \cdot 4 x y^{4}$
2) $\left(2 x y^{4}\right)^{4} \cdot\left(2 x y^{4}\right)^{-1}$
3) $\left(4 u^{4}\right)^{3}$
4) $\frac{\left(a^{-3} b^{4}\right)^{2}}{a^{4} b^{-2}}$
5) $\frac{3 x^{3} y^{3}}{4 x^{2} y^{-3}}$
6) $\left(\frac{2 n^{-1}}{2 m^{-1} n^{2} \cdot 2 m n^{-3}}\right)^{-2}$

Simplify.

7) $\sqrt{8}$
8) $\sqrt{288}$
9) $\sqrt[4]{32}$
10) $\sqrt[7]{-512}$
11) $\sqrt[3]{1000}$
12) $\sqrt[5]{256}$

Write each expression in exponential form.
13) $(\sqrt{3})^{5}$
14) $(\sqrt[3]{2})^{5}$

Write each expression in radical form.

15) $5^{\frac{7}{4}}$
16) $7^{\frac{1}{2}}$

Determine if the function represents exponential growth or decay. Then sketch the graph of each function.
17) $y=2 \cdot 3^{x}$

18) $y=2 \cdot\left(\frac{1}{2}\right)^{x}$

19) If you invest $\$ 25,000$ in an account that gets 12% annual interest compounded quarterly, how much would you have in 10 years.
20) If you invested a penny on Jan 1, 1998 at 10% interest compounded daily, how much would you have on Jan 1, 2020 ?
21) How much would you need to invest to get $\$ 20,000$ in 5 years at an annual interest rate of 8.5% compounded monthly?
22) An initial population of 5 squirrels increases by 9% each year for 10 years. Using x for years and y for the number of squirrels, write the equation that models this situation. How many squirrels will there be in 10 years?
23) A car purchased for $\$ 34,000$ is expected to lose value, or depreciate, at a rate of 6% per year. Using x for years and y for the value of the car, write the equation that models this situation. After how many years is the car first worth less than $\$ 21,500$?

Solve each equation.

24) $3^{3 n+1}=3^{3}$
25) $5^{-2 n}=5^{3 n}$
26) $2^{3 x-2}=\frac{1}{16}$
27) $6^{-\nu}=36$
28) $2^{-3 x}=16$
29) $5^{-3 n-2}=\frac{1}{625}$
30) $7^{3 k}=343$
31) $5^{-2 x}=125$
